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Abstract

Data-driven Computer Vision (CV) tasks are still lim-

ited by the amount of labeled data. Recently, some se-

mantic NeRFs have been proposed to render and synthesize

novel-view semantic labels. Although current NeRF meth-

ods achieve spatially consistent color and semantic render-

ing, the capability of the geometrical representation is lim-

ited. This problem is caused by the lack of global infor-

mation among rays in the traditional NeRFs since they are

trained with independent directional rays. To address this

problem, we introduce the point-to-surface global feature

into NeRF to associate all rays, which enables the single

ray representation capability of global geometry. In partic-

ular, the relative distance of each sampled ray point to the

learned global surfaces is calculated to weight the geom-

etry density and semantic-color feature. We also carefully

design the semantic loss and back-propagation function to

solve the problems of unbalanced samples and the distur-

bance of implicit semantic field to geometric field. The ex-

periments validate the 3D scene annotation capability with

few feed labels. The quantification results show that our

method outperforms the state-of-the-art works in efficiency,

geometry, color and semantics on the public datasets. The

proposed method is also applied to multiple tasks, such

as indoor, outdoor, part segmentation labeling, texture re-

rendering and robot simulation.

1. Introduction

The Computer Vision (CV) perception tasks have attracted

widespread attention from academia and industry due to

the amazing results. However, the breakthrough in CV is

still limited by the availability of high-quality annotated

data. The existing annotated data is mainly obtained by

simulator [6, 16, 26], manually labeling or pseudo labels

from perceptual algorithms. These methods have some

*Corresponding author

problems such as domain gaps, low labeling efficiency and

unsatisfying quality. Recently, some works are proposed

for novel view synthesis, such as Neural Radiance Fields

(NeRF) [19] for novel view color image rendering, and se-

mantic NeRF [34] for annotation data rendering. These

methods provide a new pipeline for data labeling.

Inspired by NeRFs, we prefer to construct an implicit

data engine that can generate high-quality multi-sensor CV

data such as images, semantic labels, depth and videos for

different tasks training or evaluation by feeding posed im-

ages and a small amount of semantic labels. However, the

existing methods such as the semantic NeRF [34] and its

variants [3, 7, 12, 14, 15, 17, 21, 28, 33, 35, 35] still face

some challenges to achieve this goal, e.g., (i) compared to

color, we find that dimensionality-reduced semantics inter-

fere somewhat with geometry learning when we introduce

semantics into NeRFs. Noisy geometry further degrades

the quality of color and semantics. Thus, we prefer decou-

pling the geometry from the semantic field. (ii) In these

NeRF methods, the independent single ray used for training

lacks global information, resulting in dense semantics feed-

ing for a complete and high-quality semantic scene train-

ing, increasing the labeling workload. (iii) The independent

single ray also lacks global geometry information, so the

current NeRF methods struggle to learn precise geometry.

In this paper, we propose an Implicit Semantic Neural

Engine for multi-sensor dAta Rendering, named IS-NEAR.

We are the first to introduce the 3D global features into

NeRFs as a novel semantic and geometric representation

and address the aforementioned challenging issues. Specif-

ically, our implicit engine consists of four modules, namely

feature, geometry, semantic, and color modules. To speed

up the training and inference, we use the multi-resolution

hash table proposed in instant Neural Graphics Primitives

(instant NGP) [20] to learn and store spatial grid features in

the feature module. These grid features are used for render-

ing and generating color, semantics, and geometry, ensur-

ing spatial consistency among these elements. In traditional

NeRFs, such as instant NGP [20], Mildenhall NeRF [19] or
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semantic NeRF [34], for each ray, we can only collect the

features from the sampling ray points or the grids that inter-

sect the ray. This ray-wise feature is suitable for inferring

the ray-wise-different color, but it is unreasonable to infer

geometry or semantics that with local and global continu-

ity. Instead, this ray-wise feature can easily lead to their

discontinuity. To address this problem, we propose to learn

global surfaces like the point-to-surface representation [25]

in the geometry module to globally constrain the ray-wise

geometry. We calculate the relative distances from each

point on the ray to the global geometric surfaces to weight

the density distribution and the collected features that used

for color and semantics rendering. The experimental results

show that the global features can improve geometry, color,

semantics and efficiency at the same time.

In order to decouple the geometry from the semantic

field, we customize back-propagation function that ignores

the geometry gradient from semantics. In color module,

we use the direction embedding and grid features to de-

code the color. While in the semantic module, we only use

the weighted features to decode semantics without direction

embedding, because semantics are direction-invariant. We

also carefully design the cross entropy loss function with

the truncated weights to solve the problem of unbalanced

semantic samples. For sparse view scenarios, such as au-

tonomous driving, we use depth or point cloud geometry

priors to assist in constructing large-scale scene data en-

gines. Experiments validate the effectiveness of the pro-

posed method and show that our method outperforms the

state-of-the-art (SOTA) algorithms. For example, the ge-

ometric RMSE is reduced from 0.096 m to 0.0122 m, the

semantic mIoU is improved from 93.68% to 94.79%, the

color PSNR is improved from 31.39 dB to 35.9 dB, and

the training and rendering times are reduced from 8 h and

4.82 s to 15 min and 0.1 s, respectively. The proposed en-

gine is also applied to indoor, outdoor and objects semantic

labeling, texture re-rendering and data simulation. The con-

tributions of this paper are summarized as follows:

1) To the best of our knowledge, IS-NEAR is the first to as-

sociate all independent NeRF rays with 3D global fea-

tures, which improves the geometry precision and the

quality of color and semantics. The global features also

reduce the labels feeding and improve efficiency.

2) We propose to customize the back-propagation function

to eliminate the differences between geometric and se-

mantic inferences.

3) The carefully loss and network design makes a trade-off

among each performance indicator of the engine, e.g., the

efficiency, semantics, color and geometry are superior to

the SOTA methods.

4) Extensive experiments validate our engine and sample ap-

plications, including indoor, outdoor and objects semantic

labeling, texture re-rendering, and robot simulation.

2. Related work

2.1. Implicit geometry and color fields

NeRF is first proposed by Mildenhall et al. [19] for view

synthesis. They formulate the image rendering task as a

differentiable optimization problem, achieving amazing re-

sults. The geometric information of a scene is also learned

by renderer training process simultaneously. Therefore,

more and more research [2, 8, 29, 32] focuses on image

rendering and 3D scene reconstruction simultaneously with

NeRF. Some studies [5, 13, 31] also show that geometric

priors can improve the quality of rendering and assist the

implicit fields construction with sparse views.

2.2. Implicit semantic field

Recently, scholars start to focus on the combination of im-

plicit fields with geometry, color and semantics. For exam-

ple, the Panoptic NeRF is proposed by Fu et al. [7] to render

the spatially consistent 2D semantics for autonomous driv-

ing segmentation training. However, this approach relies

on prior 3D bounding boxes and 2D pseudo-labels. Zhi et

al. [34] proposed the Semantic NeRF that encodes appear-

ance, geometry and semantics in one NeRF. It also works

with sparse semantic labels. However, this method takes

several hours for training, and some details are lost in the

rendering images. To speed up labeling, Zhi et al. [35] pro-

posed an online labeling method based on the implicit map-

ping method iMAP [24]. Similarly, Mazur et al. [17] pro-

pose a real-time feature fusion fields based on iMAP. These

iMAP-based scene annotation methods achieve fast seman-

tic scene reconstruction. However, the generated labeled

data still cannot be used as truth value due to the limited

mean Intersection over Union (mIoU).

Vora et al. [28] propose a two-step training method that

first trains an original NeRF for extracting geometry rep-

resentation. Then the parameters of the NeRF are held

fixed and another semantic reasoning network is trained

for semantics. The 3D network and two-step training pro-

cesses make the method time-consuming and computa-

tional resource-consuming. There are some other meth-

ods [12, 15, 21] that use the pre-trained segmentation model

to get the prior pseudo-labels for implicit semantic fields

training. Although these methods have some performance

improvements over semantic segmentation networks, the

mIoU of the generated label is still low due to the noisy

pseudo-labels.

These methods can effectively solve the problem of spa-

tial inconsistency of the traditional 2D semantic segmenta-

tion. However, if the combination of multi-source implicit

fields is used in a data engine, further trade-offs and im-

provements in time cost, image, color, and semantic quality

are required. This paper proposes to use 3D global features

to trade-off the quality of the implicit fields.
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Figure 1. The proposed implicit engine includes four modules, i.e., feature module, geometry module, semantic module and color module.

Firstly, the hash features are looked up from our feature module, and then they are converted into density features. These features are

subsequently weighted by the point-to-surface weights to obtain the semantic-color feature. Then, the semantic-color feature is fed into

decoders to get color and semantic probability. Finally, the image, depth and semantics are obtained by volume rendering.

3. Method

Our goal is to construct an implicit engine with limited

accessible data such as pose, image, semantics or depth.

Then, we can generate more novel view multi-sensor data.

As shown in Figure 1, the engine consists of four learned

modules, i.e., feature module, geometry module, semantic

module and color module. For each ray, we first collect

the learned grid features through the feature module. Then,

these features are fed into a Multi-Layer Perceptron (MLP)

decoder, and the output of the decoder are weighted by the

geometric global features to get density and semantic-color

feature. The geometric global features are learned from the

sampling points of each ray beside the MLPs training. Af-

ter that, we use semantic-color feature and MLP decoders

to get semantics and color. In color module, the direction

embedding is used for color rendering. Finally, we can get

depth, semantics and image with the volume rendering.

3.1. Global feature for implicit fields

We sample the ray as instant NGP [20] and the sampling

point is denoted by p(x, y, z). The feature module learns

a multi-resolution hash table [20], which takes the input of

a ray point coordinate (x, y, z) and outputs the feature F
of this point. In this way, the collected features only con-

tain the ray-point-located grid features, lacking of global

information. This paper proposes to associate all ray sam-

ples with 3D global feature. Inspired by the point-to-surface

representation [25] that learns global surfaces to extract the

local and global feature of point cloud for segmentation and

classification, in this paper, we use the learned quadrics

to globally associate all independent rays, attaching global

features to each sampling point. The point-to-surface repre-

sentation is expressed as:

d = π
T ·X, (1)

where π is the coefficients vector of the quadratic terms,

namely the global feature, and the notation X is the vector

of quadratic terms, i.e.,

X = (x2, y2, z2, xy, xz, yz, x, y, z). (2)

We map the value of d to a range of [0, 1] with sigmoid func-

tion [9]. Then, 1 − sigmoid(d) is simply used to indicate

proximity of the point to the global surface.

In order to attach this global feature to a point, we use

an MLP as embedding layer Lemb to get the weights and

globally weight the geometry distribution. The weights can

be expressed as:

ω = Lemb(1− (sigmoid(πT ·X))). (3)

Then, as shown in Figure 1, we define the point density σ,

semantics s and color c as:

[σ,Fsc] = ωσF ·DσF (F), (4)

s = Ds(Fsc), (5)

c = Dc([Fsc, Edir]), (6)
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where the symbol ”·” represents the multiplication of cor-

responding elements. Since the semantics are direction-

invariant, we only decode Fsc to obtain s as formulated

in Eq. 5. On the contrary, obtaining color requires decoding

both Fsc and direction embedding Edir, as shown in Eq. 6.

After getting the point-wise attributes, i.e., σ, s and c,

we use the volume rendering to get depth, semantics and

image. The volume rendering can be formulated as:

A =

N
∑

i=1

Ti(1− exp(−σiδi))ai, (7)

where, the notation i indexes the point on a ray, δi is the dis-

tance between two adjacent sampling points, and N repre-

sents the total number of the sampling points. The notation

Ti is the accumulated transmittance along the ray direction,

expressed as:

Ti = exp(−
i−1
∑

j=1

σjδj). (8)

The notation A indicates different attributes, such as depth,

semantics or image, and the corresponding point attribute

ai is
∑i

i=1
δi, si, or ci, where si is an Nc-dimensional

vector, and each dimension represents the probability of a

semantic category.

3.2. The loss functions

Color loss: The application scenarios of the data engine

are complex and diverse. Therefore, we carefully design

the loss functions for different implicit fields. The implicit

color field is trained with color loss, defined as:

Lc =
1

B

B
∑

b=1

∥cb − ĉb∥
2
, (9)

where B is the batch size, cb is the predicted color, and ĉb

is the Ground Truth (GT).

Semantic loss: For semantic field, we use a weighted

cross-entropy loss function, which is expressed as:

Ls = −
∑

r∈R

Nc
∑

k=1

wkp̂k(r) log pk(r), (10)

where Nc is the number of the semantic categories, r is

the sampled ray and R represents the set of all the train-

ing rays in one batch. The notations pk and p̂k are the

predicted probability and GT, respectively. Different from

the traditional cross-entropy loss function used in Semantic

NeRF [34] or SS-NeRF [33], in this paper, we weight each

category by the weights wk to balance the contribution of

samples across all classes. The weights wk is defined as:

wk = ⌊l
nk

∑Nc

i=0
ni

⌉h, (11)

where nk is the number of pixels of the kth category. The

operation ⌊lx⌉
h represents up and down truncation, defined

as:

⌊lx⌉
h =







l, x < l

x, l ≤ x ≤ h

h, x > h

. (12)

In our subsequent experiments, we set l = 1 and h = 5 to

ensure that the weight of large samples is not too low, and to

limit the maximum weight of small samples. This weighted

loss helps to solve the problem of unbalanced samples in

semantics learning.

Eq. 7 indicates that the obtained semantics are related

to both semantic attribute si and density σi. In auto-

matic back-propagation algorithm, the semantics will feed

back a gradient to density σ. Thus, if the automatic back-

propagation algorithm is used directly in semantics learn-

ing, the geometry will be interfered with semantics and

more seriously, the network will fail to converge. To avoid

this, Siddiqui et al. [21] proposed to use the detach func-

tion in PyTorch to stop gradients to the density. However,

stopping gradients results in features not being updated for

semantics, increasing the burden on the decoder, and reduc-

ing performance. To solve this problem, we customize the

back-propagation function that omits the partial derivative

of σ from s for calculating the gradient of σ.

Depth loss: In some special scenarios, such as self-

driving, sparse views result in noisy geometry, which fur-

ther leads to noisy color and semantics. In this case, we

introduce the depth supervision with some geometric prior

such as depth or point cloud to construct the implicit en-

gine. Similar to DepthFormer [1], we define the depth loss

function as:

Ld =

√

1

Nd

∑

i

g2i +
λ

Nd
2
(
∑

i

gi)2, (13)

where gi = log di − log d̂i, d̂i is GT and di is the predicted

depth. The number of the GT pixels is denoted by Nd. The

notation λ = 0.15 in our experiments.

3.3. Implementation details

Our method is implemented by PyTorch based on the open-

source project ngp-pl [30]. We use the CUDA code to cus-

tomize our back-propagation function. For scenarios with

dense views, the engine is trained without depth supervi-

sion, while for sparse views, depth supervision can be used

to effectively construct a data engine. All kinds of engines

are trained on a RTX-A6000 GPU machine. For each scene,

we train the network with the batch size of 8192. Each

epoch contains 1000 steps. The learning rate is 0.01.
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Table 1. The evaluation of efficiency, color, semantics, and geometry on Replica dataset [23]. The evaluated indicators include training

time Tt, rendering time Tr , PSNR, SSIM, mIoU, total accuracy ACCt, class average accuracy ACCa, AbsDiff, SqRel and RMSE as defined

in [34]. The best ones are bolded.

Performance Efficiency Color Semantics Geometry

Method Tt Tr PSNR (dB) SSIM mIoU (%) ACCt (%) ACCa (%) AbsDiff SqRel RMSE

SS-NeRF [33] 9 h − 30.2 − 92.4 − − − − −
Semantic-NeRF [34] 8 h 4.82 s 31.39 0.930 93.68 99.00 96.53 0.032 0.007 0.096

Ours 15 min 0.1 s 35.9 0.970 94.79 99.29 97.68 0.0056 0.0006 0.0122

4. Experiments

4.1. Datasets and experiments

The data engine focuses more on the quality of the gen-

erated data, so we select three high-quality public datasets

to validate and evaluate our method, namely the in-

door Replica dataset [23], outdoor scene Virtual KITTI

(VKITTI) [4], and object scene Synthetic-NeRF [19].

We first analyze the performance of our method and the

compared baselines from the aspects of efficiency, color, se-

mantics, and geometry. Then, we conduct ablation study to

validate the proposed method. Finally, we present the ap-

plications of the proposed engine.

4.2. The performance of ISNEAR

We compare the efficiency, color, semantics, and geome-

try of the IS-NEAR and the SOTA works, namely semantic

NeRF [34] and SS-NeRF [33]. Different from the pseudo-

label methods [12, 15, 21], we use high-quality GT to train

and evaluate the engine. Table 1 shows the comparison re-

sults, which are the mean of 7 Replica [23] scenes (room:0-

1, office:0-4).

Efficiency: IS-NEAR takes 15 minutes to train one

scene, while the compared methods take about 8 to 9 hours.

The time cost of IS-NEAR is less than 3% of that of the

compared methods. The use of hash features significantly

improves the efficiency. Moreover, since the time is pro-

portional to the number of volume rendering samples on

a ray, the proposed global feature reduces the number of

sampling points as shown in Figure 2, and further reduces

the training time. For a VKITTI [4] scene, with the ab-

sence of 3D global feature, the example scene takes 1019

s for training. While in 3D global feature case, it takes

648 s, further improved by 36.4% ( 1019−648

1019
) on the basis

of hash method [20]. Similarly, the rendering time of our

method takes only 0.1 s for an image of 320×240, which

is a significant improvement over semantic NeRF’s 4.82 s.

Our method also supports multi-GPU parallel training. The

training time can be further reduced proportionally.

Color: As for image quality, the average PSNR of novel

view synthesis is 35.9 dB, and the Structure Similarity In-

dex Measure (SSIM) is 0.97, outperforming the compar-

training step

sa
m

p
le

s 
o

n
 a

 r
ay

global feature

without global feature

Figure 2. Ray samples with or without 3D global feature.

GT ours Semantic-NeRF

Figure 3. The image rendering quality comparison between our

method and the Semantic-NeRF [34]. The red circle marks the

contrasting details. Please zoom in for details.

ison methods. Compared with Semantic-NeRF [34], the

IS-NEAR can reconstruct more details as the visualization

results shown in Figure 3. These details are crucial for

data generation and simulation in some applications such as

multi-view 3D reconstruction, feature point extraction, etc.

Therefore, our method is closer to the basic characteristics

of a data engine, as implied by its name, IS-NEAR.

Semantics: The mIoU, ACCt and ACCa of IS-NEAR

are 94.79%, 99.29%, 97.68%, respectively, superior to the

Semantic-NeRF and the SS-NeRF [33]. In order to more in-

tuitively compare the semantic reconstruction effect, some

rendering results are shown in Figure 4. These results indi-

cate that our engine can reconstruct more semantic details,

which is benefit from the use of the designed 3D global fea-
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image GT ours Semantic-NeRF

Figure 4. The visualization results of the rendered semantics.

Some details to be contrasted are marked in red circles. Please

zoom in for a good view.

(a) (b)

(d)(c)

Figure 5. The rendered novel view on VKITTI [4]: (a) image with

semantic mask, (b) depth, (c) image, (d) label.

ture and the truncated-weights semantic loss. These details

are important for a data engine. We know that the upper

limit of GT determines the upper limit of the perception al-

gorithm. We prefer it to be near to the limit (100%). How-

ever, the closer it is to the limit, the more difficult it is to

achieve. Nevertheless, the experimental results indicate that

our method IS NEAR.

Geometry: For fair comparison, AbsDiff, SqRel and

RMSE are used to evaluate the geometry of IS-NEAR as

they are also used in Semantic-NeRF [34]. The compari-

son results show that our geometric indicators are superior

to the Semantic-NeRF, and the geometric error is reduced

by about an order of magnitude. The pipeline in Figure 1

indicates that geometry is the foundation of color and se-

mantics. Therefore, geometry is essential for semantic and

color rendering.

Sparse view: Sparse view data is challenging due to the

little geometric constraints from different views, such as the

car driving data. To address this issue, we introduce geo-

metric priors, where geometry is supervised by the existing

depth images. In this case, we use the VKITTI [4] dataset

to evaluate the semantics and colors. To do this, a static se-

quence is selected for training and testing. Figure 5 shows

the rendering results of a novel view. The test PSNR, mIoU,

ACCt and ACCa are 22.5 dB, 77.7%, 95.9% and 88.2%, re-

spectively.

4.3. Ablation studies

Global feature: In this section, the details of the proposed

method are analyzed in ablation study. Firstly, we analyze

the effect of the global feature. We compare the proposed

method to the baseline instant NGP [20]. Although the

baseline is equipped with a semantic decoder, the perfor-

mance of the baseline is equivalent to that of instant NGP

due to the use of custom backpropagation function. The

results of Table 2 show that the point-to-surface global fea-

ture simultaneously improves the performance of geometry,

color and semantics, which indicates that the global feature

effectively improves the representation ability of geometry

in the implicit fields. In addition, the improved geometry

further enhances semantics and color.

Table 2. The ablation study of the global features.

Performance RMSE (m) PSNR(dB) SSIM mIoU(%) ACCt(%) ACCa(%)

Baseline 0.09 36.5 0.970 91.4 98.9 96.0

Ours 0.027 41.2 0.992 94.2 99.3 97.8

Sparse labels: We prefer to feeding less labels to train

an engine and keep the quality of the generated data. There-

fore, we test the performance with sparse labels. Table 3

records the quantization results of different sparse rate la-

bels on Replica dataset. The results of the first five rows in

Table 3 illustrates that the performance of the dense and

sparse labels training are similar, which is conducive to

speeding up the semantic scene labeling. We also con-

duct an experiment to validate the effectiveness of global

feature in reducing pixel-wise labels feeding for semantic

field training. The results recorded in the last three rows

marked by w/o PS, indicat that the networks are trained by

these sparse labels without point-to-surface global feature.

The comparison between the first and last three rows results

shows that the global feature can significantly improve the

performance for sparse labels. These results indicate that

the global feature enhances the representation capability of

a single ray. Therefore, the IS-NEAR help us to reduce the

manual labels feeding for annotation.

Truncated-weights semantic loss function: In the

training process of the implicit semantic field, unbalanced

samples make it difficult to learn the categories with a small

number of samples. To solve this problem, the small sam-

ples categories are weighted with a larger weight when solv-

ing the loss as formulated in Eq. 10. Figure 6 is the com-

parison results about this loss. The results show that the

weighted loss helps to recover the detailed semantics.

Semantic rendering without direction embedding: As
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Table 3. The performance of the data engine trained with sparse

labels. The rate R represents the ratio of the number of semantic

labels to the images.

R PSNR (dB) SSIM mIoU (%) ACCt (%) ACCa (%)

10% 40.7 0.989 93.1 99.1 96.1

20% 40.5 0.988 93.1 99.1 96.2

25% 40.3 0.988 92.4 99.0 96.2

50% 40.7 0.989 92.6 99.0 96.1

100% 40.6 0.989 92.3 99.0 95.9

10%w/o PS 39.6 0.985 83.6 97.3 91.0

20%w/o PS 39.1 0.983 89.3 98.5 94.5

25%w/o PS 39.1 0.982 89.4 98.6 94.6

（a）

（b）

Figure 6. The comparison of truncated-weights semantic loss

function. (a) The engine is trained with the traditional cross-

entropy loss. (b) The engine is trained with the truncated-weights

cross-entropy loss.

mentioned above, the view direction is irrelevant to seman-

tics. Similar to SS-NeRF [33], we use the semantic-color

feature to render the semantics without the direction embed-

ding. In order to verify its effect, we conduct a comparative

experiment on Synthetic-NeRF [19] dataset. The compar-

ison results are shown in Figure 7. Figure 7(a) shows the

novel view rendering result of adding direction embedding

to the semantic decoder Ds. In this case, the noise occurs

when rendering a novel view even though the training view

is clean. When the direction embedding is removed, the

rendering image is noise-free as shown in Figure 7(b).

4.4. Application

To further verify the effectiveness of the proposed method,

the proposed implicit engine is applied to part segmentation

labeling, texture re-rendering and robot simulation.

Part segmentation labeling: Scene labeling is an im-

portant application of the implicit semantic field. The tradi-

tional manual labeling methods are not only slow, but also

low quality. In this paper, we use the proposed engine to

construct high-quality implicit semantic field with a few ar-

tificially coarse labels. We test our approach on Synthetic-

（a） （b）

Figure 7. The comparison of direction embedding. (a) The render-

ing novel view semantics have noises when the direction embed-

ding is added to the semantic decoder. (b) No noise occurs when

the direction embedding is removed.

Input few coarse labels Output dense detailed labels

Rendering detailed semantics

Figure 8. Part segmentation labeling with the IS-NEAR engine.

We train the engine with sparse and coarse labels and get the dense

and detailed novel view images and labels.

NeRF [19] datasets without semantic labels. Some exam-

ples are given in Figure 8. We take the ficus object as

an example. We use the traditional interactive-annotation

tool EISeg [10] to obtain sparse and coarse semantic la-

bels, which only takes little time. In this ficus case, we

only annotate two coarse labels as shown in the first row

of Figure 8. Then these sparse and coarse labels and posed

images are used to train the model. Semantic loss is not

calculated when the ray is not attached with a semantic la-

bel during the training. It takes about 5 minutes for training

a model on the four RTX-A6000 platform. When render-

ing, we mask the background semantics with the estimated

depth range and get the final labeling results as shown in the

second row of Figure 8. The results show that we can use

coarse label to train the engine and get the detailed result

that is impossible for the traditional artificial. In addition,

only few views labels are enough for a complete scene an-

notation, which shows that the IS-NEAR achieves semantic

propagation. This is also impossible for the traditional 3D

1023



Figure 9. Replacing a picture on the wall with the IS-NEAR for

spatially consistent texture re-rendering.

（a） （b）

（e）（c） （d）

Figure 10. The engine is used for stereo data generation with GT

depth. (a) and (b) are the rendered left and right view, (c) is the ren-

dered depth. (d) is the stereo depth estimation result with DROID-

SLAM [27], and (e) is the monocular depth estimation result.

reconstruction methods [11, 18, 22].

Texture re-rendering: In order to improve the general-

ization ability of perceptual algorithms, data augmentation

is an effective way. However, traditional generation net-

works, such as the Generative Adversarial Network (GAN)

based methods [36], are difficult to achieve consistent style

and texture replacement. To solve this problem, we propose

to implement texture re-rendering by the interaction of the

multiple implicit fields. For example, if we want to replace

a picture in a room scene as shown in Figure 9, we need to

give a new texture image and select a view to map it onto

the original region. Then, the new texture is mapped into the

implicit fields through the model training. In the training, as

stereo mono

Figure 11. The trajectory estimation results with stereo and mono

sequence.

for the selected view, if the semantic category is a picture,

the color GT is replaced by the corresponding new texture

image, otherwise we use the original image. With regard

to the other views, the color loss is masked by the picture

semantic, which ensures that other views do not interfere

with the learning of the new texture and that the texture is

spatially consistent. The results show that the implicit ge-

ometry field ensures the consistency of different views tex-

tures, and the semantic information is the key to update the

specified view texture.

Robot simulation: We also utilize our implicit data en-

gine to generate video data sequence of both mono and

stereo types in order to verify its effectiveness of simulation.

Figure 10 shows the rendering results, including the (a) left

and (b) right views and (c) the corresponding depth GT. We

run DROID-SLAM [27] on the generated data in both mono

and stereo modes. For depth estimation, the stereo result

outperforms the mono type as shown in Figure 10 (d) and

(e). At the same time, we find the estimated stereo depth is

close to the generated depth GT. Furthermore, with stereo

data, the method produces better video trajectory estimation

as shown in Figure 11, with an ATE of 3.5 cm compared to

the mono type with 29 cm. These results indicate that the

generated data is valid and can be used for robot simulation

and algorithm validation.

5. Conclusion

This paper proposes a 3D global feature based data engine

IS-NEAR with implicit fields. By introducing the global

features to implicit fields, our engine outperforms the ex-

isting methods in terms of efficiency, geometry, color, and

semantics. The proposed method can be used for fast and

high-quality scene labeling, and generating multi-sensor

data for various computer vision tasks, such as part segmen-

tation, texture re-rendering and robot algorithms simulation.

For sparse view input, prior geometry is required to

guide geometry learning. This is a limitation of our method

that should be further studied in the future.
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